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ABSTRACT
Concurrency levels in large-scale supercomputers are rising
exponentially, and shared-memory nodes with hundreds of
cores and non-uniform memory access latencies are expected
within the next decade. However, even current petascale
systems with tens of cores per node suffer from memory
bottlenecks. As core counts increase, memory issues will
become critical for the performance of large-scale supercom-
puters. Trace analysis tools are thus vital for diagnosing the
root causes of memory problems. However, existing memory
tracing tools are expensive due to prohibitively large trace
sizes, or they collect only statistical summaries and omit
potentially valuable information.

In this paper, we present ScalaMemTrace, a novel tech-
nique for collecting memory traces in a scalable manner.
ScalaMemTrace builds on prior trace methods with aggres-
sive compression techniques to allow lossless representation
of memory traces for dense algebraic kernels, with near-
constant trace size irrespective of the problem size or the
number of threads. We further introduce a replay mecha-
nism for ScalaMemTrace traces, and discuss the results of
our prototype implementation on the x86 64 architecture.

1. INTRODUCTION
This decade is projected to usher in exascale computing

with systems three orders of magnitude more performant
than the fastest high-performance computing (HPC) sys-
tems today. Harnessing such massive compute power will
not be easy at such scale. Experience with current petascale
systems, e.g., Jaguar, BlueGene family installations, and
RoadRunner, has shown that production codes tend to face
scalability problems each time the core count is increased by
a factor of 10. The causes of these problems are many-fold
and require root cause analysis of application/system be-
havior. Today’s tools fail to support root cause diagnosis at
scale. Causes may only become apparent when cross-node
correlation of symptoms is applied. But extensive trace col-
lection across nodes becomes infeasible at scale.

The most common causes of scalability problems are com-
munication, I/O, and memory inefficiencies. This work fo-
cuses on memory inefficiencies. In particular, we focus on
SPMD codes that employ a multi-threaded shared-memory
model on-node (such as OpenMP or POSIX threads) and
a distributed memory model across nodes (such as MPI or
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Hadoop). Effective execution on multi-cores requires effi-
cient use of the memory hierarchy across threads. Tools are
required to analyze memory interactions, but most tools gen-
erate excessively long memory traces. Since the total size of
these tools’ trace data scales with the thread and core count,
these tools will not scale to higher thread and core counts,
and their analysis capabilities are severely limited. Some
tools reduce trace size using statistical summaries, but lossy
compression is difficult to use for scalability analysis.

To meet the challenges of performance analysis at exas-
cale, we must depart from traditional approaches. Ideally,
we would reduce data collection to only those metrics rel-
evant to a symptomatic problem. Even this is difficult,
though, as frequent probing on even a single thread gen-
erates excessive data for long-running exascale production
jobs. The extracted data must be compressed on-the-fly ei-
ther without loss of accuracy or with minor losses that retain
the original application behavior for the sake of analysis.

Recent research in scalable compression of communication
and I/O traces [22, 27] has demonstrated that the traces can
be stored in near-constant size irrespective of the problem
size or concurrency level. However, these traces do not re-
flect memory access patterns across threads, which are vital
in identifying bottlenecks in memory hierarchies.

Contributions: We have developed a memory trace gen-
erator, a generic trace compression template library, and a
signature tree library in C++. We have used these compo-
nents to build a memory trace compression tool, ScalaMem-
Trace, that generates near-constant size memory traces that
preserve the temporal order of accesses for dense algebraic
kernels, irrespective of problem size and concurrency size.
We have devised a novel abstraction of Extended Power
Regular Section Descriptors (EPRSD) suitable for scalable
trace compression on-the-fly. Our generic EPRSD template
library, instantiated for memory tracing in this work, can be
reused to ease the development of other PRSD-based trace
compression tools for arbitrary application domains.

ScalaMemTrace implements a multi-level memory trace
compressor involving intra-thread, inter-thread and inter-
process compression schemes. A signature tree optimization
further speeds up the trace compression process. This work
also contributes an optimized trace generation process by
implementing a per-function stack-walk approach instead of
per-instruction stackwalks.

We experimentally assess the trace reduction capabilities
of ScalaMemTrace. Our traces are orders of magnitude
smaller than uncompressed traces and near-constant size for
kernels with regular memory access patterns.

Overall, ScalaMemTrace is the first approach to provide
scalable and complete memory traces instead of just par-
tial traces, and it preserves the ordering of memory accesses
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that they can be deterministically replayed. Preservation of
memory reference order provides the basis for future work on
scalable root cause analysis of memory inefficiencies. This
work also provides novel opportunities for system simulators,
such as Dimemas, SST etc. [23, 13, 9, 26, 24] to efficiently
simulate memory artifacts and reason about performance in
terms of scaling for larger problem sizes or node counts based
on our proof-of-concept replay engine. ScalaMemTrace is
also a key component of our ongoing effort to automatically
generate benchmarks from large-scale applications at vari-
ous levels of detail, including memory characteristics.

2. MEMORY TRACE COMPRESSION
Our memory trace compression scheme is based on the

PRSD abstractions [22, 17], but is more fine-grained and,
hence, called Extended PRSDs (EPRSDs). EPRSDs pre-
serve the order of memory references and generalize memory
access patterns across threads and processes along with loop
dependencies. EPRSDs differ from PRSDs in that EPRSDs
additionally represent inter-thread dependencies. Our ap-
proach extracts complete memory traces that are orders
of magnitude smaller than the conventional memory traces
and near-constant in size irrespective of the problem size for
dense algebraic kernels.

Application

Memtrace Instrumentation Tool

Trace Compressor

EPRSD Template Library

Near-Constant size memory trace files

Figure 1: Data Flow of the Trace Compressor

We rely on a binary instrumentation tool, Pin [14], to
extract memory accesses from an application. Pin’s instru-
mentation records an application’s memory references, and
the output is fed into a compressor module that dynami-
cally combines the streams into a single compressed trace.
The tool module is built using the C++ EPRSD template
library, which handles dynamically merging incoming mem-
ory references into a near-constant size trace file. Figure 1
shows the data flow of our memory trace compressor.

Pin is run as a set of MPI processes, either on a single node
or across multiple nodes. Each Pin process instruments an
SPMD program and writes the resulting memory trace to a
named pipe. In parallel, compressor modules run in separate
MPI processes and consume the memory traces from the
pipe. Each pipe is uniquely named using the MPI rank of
the Pin and compressor processes it connects. For example,
Pin with rank 0 writes to a pipe named ’pipe0’ and the
compressor with rank 0 reads from the same pipe. This
arrangement is depicted in Figure 2.

Figure 2: Design of the Memory Trace Compressor

Each compressor process generates EPRSDs for all the
threads in its corresponding application process. It per-
forms intra-thread and inter-thread merging before passing
the EPRSDs to another compressor process for inter-process
merging. Inter-process merging combines repetitive mem-
ory access patterns (or EPRSDs) across multiple processes
of a SPMD application. The MPI compressor processes in-
volved in an inter-process merge can be running on a single
or different machines in a cluster. This results in order pre-
serving, lossless and near-constant size memory traces for
dense algebraic kernels, which can be used for replay and
extrapolation. Our replay tool verifies the correctness of
our compression scheme and can aid in the analysis of prob-
lem scaling. These techniques have proved highly scalable
for communication tracing in ScalaTrace [22].

Algorithm 1 Merge(newref)

Require: A memory reference newref.

add newref as tailnode
rightTail = tailnode
leftTail = search matching node for tailnode
if leftTail then

current = rightTail
while current 6= leftTail.Next do

current = current.Prev
leftHead = find match for current
if leftHead == NULL then

break
else

rightHead = current
end if

end while
if current == leftTail.Next then

merge the sequence (rightHead ... rightTail)
with (leftHead ... leftTail)

end if
end if

2.1 Intra-thread Compression
Intra-thread compression exploits the repetitive behavior

of applications. Regular Section Descriptors (RSDs) [22]



Figure 3: Example of Intra-thread Compression

capture load and store instructions within a loop in constant
size and Power Regular Section Descriptors (PRSDs) cap-
ture RSDs nested in multiple loops [22]. EPRSDs extended
PRSDs with the notion of thread dependencies. For ex-
ample, RSD1 :< 1000, STB , LDA > represents alternating
store and load instructions repeating 1000 times. PRSD1 :
< 100, RSD1, STD, LDC > represents 100 occurrences of
RSD1 loop followed by store and load instructions with
thread dependencies ignored. The code snippet in Figure 4
corresponds to the PRSD mentioned above.

The algorithm for intra-thread compression is shown in
Algorithm 1. The compression algorithm maintains a com-
pressor object, which is a list of EPRSDs. While parsing
the memory traces generated by Pin, new entries are ap-
pended to the list if no match is found, otherwise added
to the matching window to find a repetitive sequence. The
compression algorithm compares each memory reference in
the input with a set of previous memory references, and it
creates an RSD when a sequence of repetitions is found. The
length of trace segments compared depends on the size of the
window used to buffer the trace. The larger the window size,
the higher the compression ratio and vice versa. To identify
a loop of N memory references, a window size of at least
2N should be used for good compression. For M memory
references, the algorithm runs in O(M2) time, if the window
is not used and all previous references are compared. With
a window of size S, the algorithm runs in O(MS) time.

Figure 3 shows an example of intra-thread compression.
The memory references op1, op2 and op3 are added to a list
and matching patterns are found dynamically. Per Algo-
rithm 1, on finding a matching sequence, the right portion
is merged with the left portion and the RSD count is incre-
mented. This process repeats for subsequent sequences of
op1, op2 and op3 until the pattern disappears.

Intra-thread compression takes place during execution.
Once execution completes, inter-thread memory trace com-
pression begins. During trace generation, each instruction
must be identified uniquely. Hence, a unique signature is
computed for each instruction by performing a stack-walk.
A series of program counter values form the whole signature
and their values are XORed to compute the XOR-signature.
XOR-signature matching is a necessary (but not sufficient)
condition for EPRSD merging. XOR-signatures are com-

for(i = 0; i < 100; i++) {
for(j = 0; j < 1000; j++) b = a;
d = c;

}

Figure 4: Sample Code for PRSDs

MPI_Init (&argc , &argv);
#pragma omp parallel
{

tid = omp_get_thread_num ();
for(j=400* tid; j<400* tid +100; j++) {

a[j] = j;
}

}
MPI_Finalize(MPI_COMM_WORLD );

Figure 5: Sample Code for EPRSDs
pared to speed up the matching process. If two signatures
match, a full signature match (a pairwise stack match) de-
cides if EPRSDs are merged. The stack-walk mechanism for
computing the signature is included in the instrumentation
tool discussed earlier, and these signatures are part of the
memory trace fed to the compressor tool. To speed up the
signature matching process, we use a signature tree. We
explain this optimization in more detail in later sections.

2.2 Inter-thread Compression
Intra-thread compression occurs on-line, and inter-thread

compression begins after the instrumented application ter-
minates. If the application is not multi-threaded, then the
inter-thread compression step is skipped and inter-process
compression begins. For a multi-threaded application, a sep-
arate compressor object maintains each thread’s RSDs and
PRSDs. After all threads of an application complete execu-
tion, RSDs and PRSDs of individual threads are compared
and merged into an EPRSD when a match is found. PRSD
lists are scanned for matching PRSDs with different thread
identifiers but with the same signature. If regular memory
access patterns are found then the base address for each
EPRSD is represented as a function of the thread identifier.

As an example, EPRSD1:<(0, K, 1),(1000, 400),(100,
4),ST A > denotes 100 occurrences of store A instruction
with stride 4 and base address = (1000+400*thread id) such
that 0 ≤ thread id ≤ K − 1. (0, K, 1) indicates that the
pattern was found in K threads starting at 0 with stride 1.
The OpenMP code in Figure 5 corresponds to this EPRSD.

A thread identifier’s length is incremented and its stride
is recomputed in the destination EPRSD at each stage of
the merging process. For example, the final EPRSD < T :
0, 4, 1 > indicates that the pattern occurred in four threads
starting at 0 with a stride of 1. In our experiments, the
number of threads was configured to be a power of two.

2.3 Inter-process Compression
An SPMD application runs as several processes each em-

ploying one or more threads. After the inter-thread com-
pression, the EPRSDs of a process are merged with their
matching counter-parts in other processes. Each process
transmits the final list of EPRSDs to another process us-
ing MPI calls. The EPRSD list is scanned for matching
EPRSDs with different MPI ranks but with the same signa-
ture. The binary radix tree approach is used to merge the
inter-thread EPRSDs into inter-process EPRSDs. Hence,
the inter-process compression completes in (logN) steps,
where N is the total number of processes in an SPMD appli-



cation. If M EPRSDs are merged at each step, then the en-
tire inter-process compression algorithm runs in O(MlogN)
time.

For example, EPRSD1:< (0, N, 1), (0,T,1), (1000, 400),
(100, 4), ST A > denotes 100 occurrences of store A instruc-
tion with stride 4 and base address = (1000+400*thread id)
such that 0 < thread id < T-1 and 0 < node id < N-1.
(0, T, 1) suggests the pattern was found in T threads start-
ing at 0 with stride 1 and (0, N, 1) suggests that the pattern
is found in N processes starting at 0 with stride 1. The
MPI-OpenMP code in Figure 5 corresponds to this EPRSD.

Figure 6 shows the radix tree used in inter-process com-
pression for four processes. The repetitive memory reference
patterns from different processes are combined into a single
entity and other copies are discarded. A process identifier’s
length is incremented and its stride is recomputed in the des-
tination EPRSD at each stage of the merging process. For
example, the final EPRSD < P : 0, 4, 1 > in the compressor
object of process 0 indicates that the pattern occurred in
four processes starting at 0 with stride 1. The same pattern
applies to larger numbers of processes. In our experiments,
the number of application processes and compressor pro-
cesses were configured to be powers of two.

Figure 6: Design of Inter-process Compression

When the inter-process compression completes, the com-
pressor object in process 0 contains the final list of EPRSDs
merged from all compressor processes. This list of EPRSDs
is saved into a file that of near-constant size, regardless of
problem size, OpenMP thread count, or MPI process count.

3. MEMORY TRACE GENERATION
This section describes the components of ScalaMemTrace,

our trace compression implementation. We describe the
binary instrumentation, intermediate data structures, and
other techniques we use to ensure scalability in the num-
ber of memory references within threads, across threads and
across processes on different compute nodes.

3.1 Binary Instrumentation
Pin [14] is a dynamic instrumentation tool that can dy-

namically enable and disable instrumentation without in-
curring unnecessary overhead. Pin employs a just-in-time
compiler (JIT) to instrument a binary at runtime. Pin con-
sists of a virtual machine (VM), a code cache and an in-
strumentation API used by Pintools. Pin runs in user space
and hence can instrument only user-level code. Three bi-
nary programs execute while an instrumented program is

executing — Pintool, Pin and the application. Our memory
tracing tool, ScalaMemTrace, runs as a Pintool that instru-
ments MPI/OpenMP applications. Our tool instruments
only load and store instructions in the application. For each
load and store instruction, an entry is added to an EPRSD
compressor object. As instrumentation continues, we com-
press intra-thread data on-the-fly until execution completes.

3.2 Stack walking
Stack walking is performed to obtain unique stack signa-

tures for each memory reference and to help in matching ref-
erences during the compression phase. Two different Stack-
walkers are integrated in ScalaMemTrace. 1) ver0 Stack-
walker : obtains a series of return addresses by naively walk-
ing the stack frames using the current frame-pointer value
returned by Pin; 2) DynStackwalkerAPI : a freely available
stackwalking library. Only the current stack frame infor-
mation is provided during initialization. The remaining op-
erations are managed by the library. This option is much
slower than the ver0 stack-walk, but in some cases the ver0
stackwalker fails to identify stack frames due to compiler
optimizations (e.g: Intel C Compiler), while DynStackwalk-
erAPI correctly generates accurate stack signatures. Dyn-
StackwalkerAPI also helps to obtain consistent signatures
when shared library load addresses vary among processes.

A complete stack signature for every memory reference
helps to preserve the program structure, whereas a naive
approach of merging memory references based on only pro-
gram counter values results in better compression but com-
promises the program structure. We use complete stack sig-
natures, which help to preserve program structure.

3.3 Problems in Unique Signature Generation
Intel x86 is a CISC architecture, where multiple mem-

ory operations may be performed by a single instruction.
For example, an increment instruction may perform a load,
an add, and a store. The same signature is thus used for
two different memory operations. To prevent false EPRSD
matches and compression errors, we detect such instances
during instrumentation and ensure uniqueness by XORing
the instruction type with the PC value in the signature.

A stack-walk need not be performed for every memory
reference. It is sufficient to walk the stack on function en-
try and exit points only, and corresponding PC values are
appended to the signature for memory references within a
function. Pin cannot always detect corresponding CALL
and RET instructions accurately for instrumentation. We
found a mismatch between the number of CALL and RET
instructions instrumented by Pin. In such cases, the signa-
tures only reflect the partial call path skipping over potential
differences that remain undetected. For all such occurrences
across all threads and processes, we can still identify the
memory references uniquely. The anomalies during function
boundary detection are rare and do not adversely affect the
compression process. We detail the speedup of this approach
in the results section.

4. EPRSD TEMPLATE LIBRARY
We have developed a C++ template library to facilitate

the rapid development of EPRSD trace compression tools
for high-performance applications. Users can derive classes
and/or define their own data types to store trace data and
compress them by providing just two objects. C++ classes
are designed for intra-thread, inter-thread and inter-process



compression. Most importantly, they are independent of any
message-passing APIs. Users can use our library in combi-
nation with any message-passing implementation. We have
implemented an MPI version of intra-thread, inter-thread
and inter-process memory trace compression schemes.

4.1 Signature Trees
A signature tree is constructed as a separate C++ mod-

ule and the classes are used by the EPRSD template library.
The signature tree offers faster comparison of stack signa-
tures than the XOR signature approach during compression.

For any two EPRSDs, if the XOR signatures do not match,
then signatures are different and pair-wise comparison is not
needed. If the XOR signatures match, then a pair-wise com-
parison of signatures is required. This pair-wise comparison
is costly when matches are frequent within loops. The num-
ber of comparisons depends on the signature length. When
a signature tree is used, two EPRSDs can be compared by
simply testing if they point to the same leaf node in the sig-
nature tree. Two EPRSDs match if and only if they point to
the same leaf node in a signature tree. Also, this comparison
completes in constant time.

During inter-process compression, EPRSDs are exchanged
between processes. The complete signature list must be
transferred for every EPRSD if XOR signatures are used.
This adds significant communication overhead. If a signa-
ture tree is used, the signature list of every EPRSD need not
be exchanged. The signature tree must be transmitted once
before the inter-process merging can take place followed by
the transmission of EPRSDs with only a reference to the
leaf node in the previously transmitted signature tree. This
reduces the communication overhead significantly.

5. EXPERIMENTAL FRAMEWORK
For our experiments, we used hybrid MPI/OpenMP ver-

sions of the Sequoia AMG, matrix multiplication, and vector
addition micro-benchmarks. We used power-of-two thread
counts and process counts. For AMG, we used four OpenMP
threads and varied the number of processes from 1 to 16 with
constant problem size (strong scaling). For matrix multipli-
cation and vector addition benchmarks, we varied OpenMP
thread count from 4 to 32 and kept problem size proportional
(weak scaling). All experiments used a 16-node, dual-core,
2-way SMP 64-bit Opteron cluster at NCSU.

6. RESULTS
6.1 Compression

In this section, we report the results of our experiments
with ScalaMemTrace. Files with EPRSD compressed traces
also contain loop and thread dependency information along
with the address and reference type. This includes mem-
ory address information (references within a loop, iteration
count, starting address, address stride), thread information
(number of threads, starting thread-ID, thread-ID stride)
and node information (number of processes, starting node-
ID, node-ID stride). Reported compressed trace file sizes
include all of these details.

Figure 7 shows the size of the original traces and EPRSD-
compressed traces of the vector addition microbenchmark
with weak scaling. Each thread operates on partitions of
two large EPRSD-compressed trace files for the vector addi-
tion integer arrays A and B and stores the result in another
array C at the corresponding offset. The computation is

Figure 7: Weak Scaling Trace Size (Vector Addition)

C[i] = A[i] + B[i], where i is a function of the thread id.
Weak scaling is applied by increasing the array size propor-
tionally with the number of threads. The figure illustrates
the scalability of the EPRSD compression scheme for differ-
ent concurrency levels and problem sizes. The compressed
trace file size remained nearly constant even when problem
size and number of threads were increased proportionally.

Figure 8: Weak Scaling Trace Size (Matrix Mult.)

Figure 8 shows the size of the original traces and EPRSD-
compressed traces for the matrix multiplication microbench-
mark with weak scaling. The figure illustrates the scalability
of the EPRSD approach for different concurrency levels and
problem sizes. The compressed trace file size was not con-
stant, but it was an order of magnitude less than the original
trace file size when the problem size and number of threads
were increased proportionally. When the number of threads
were increased from 4 to 64, the original trace file grew 55
times, but the compressed size increased only 3 times. For
16 threads, a larger number of RSDs were merged with fewer
breaks in the sequence compared to 8 threads. Hence, the
compressed trace size has reduced slightly.

Figure 9 shows the size of the original and EPRSD com-
pressed trace files for the AMG benchmark. Each MPI pro-
cess uses four OpenMP threads. The figure demonstrates
the scalability of the EPRSD compression scheme for dif-
ferent concurrency levels. We keep the problem size steady
and vary only the number of MPI processes (strong scal-
ing). RSDs at the intra-thread level do not merge com-
pletely as sequences are separated due to branching and
non-rectangular loops. The compressed trace file size grew
linearly so that the size was reduced by half.

It should be noted that the scales are logarithmic. The
raw trace file size increases exponentially with the number of
threads. In contrast, the EPRSD trace file size remains al-



Figure 9: Trace Size for AMG Benchmark

most constant for vector addition and grows sub-linearly for
matrix multiplication. For the AMG benchmark, the com-
pressed trace file size increases linearly but trace files were
compressed by 50%. From the results, we can conclude that
the space savings due to the EPRSD compression scheme is
exponential and resulting traces are highly scalable for dense
algebraic kernels, but linear for the AMG benchmark.

We verified the correctness of our compression scheme by
replaying the traces using our replay tool. Vector addition
and matrix multiplication compressed traces were replayed
with 100% accuracy. AMG traces were replayed with 91%
accuracy. This error is due to round-off errors caused by
integer division in the compression algorithm.

6.2 Performance
In this section, we discuss the runtime performance of the

instrumentation stage, the stack-walk and levels of compres-
sion supported by ScalaMemTrace. “Matmul 24x24” refers
to the matrix multiplication benchmark with four OpenMP
threads operating on 24x24 matrices. “Matmul 48x48” refers
to the matrix multiplication benchmark with eight OpenMP
threads operating on 48x48 matrices. “AMG n=1” refers
to the AMG benchmark with one MPI process and four
OpenMP threads. “AMG n=2” refers to AMG with two
MPI processes and four OpenMP threads in each process.

Instrumentation adds overhead to the runtime of an exe-
cutable. Even when instrumentation is disabled, application
runtime increases when executed within Pin [14]. This over-
head is due to the additional time required to execute Pin
itself. The difference in application runtime within Pin with
instrumentation turned on and off is shown in Figure 10.
This difference is due to the additional overhead involved in
executing dynamically rewritten application code snippets.
The difference in runtime with regular and optimized stack-
walk is also presented in the figure. For the “AMG n=2”
case, the benchmark runs on two nodes in parallel and the
reported measurement is the parallel execution time. The
application runtime when executed on two nodes is larger
due to additional MPI overhead. The instrumentation over-
head is much larger than the original execution time irre-
spective of stackwalk optimization. From the results we can
deduce that a larger number of instructions (due to paral-
lelization overhead) is executed but fewer function calls (due
to strong scaling) per node are made in case of “AMG n=2”
compared to “AMG n=1”. Hence, the instrumentation time
with per-function stackwalk is lowered whereas the instru-
mentation time with per-instruction stackwalk has increased
in “AMG n=2” compared to “AMG n=1” case. The opti-
mized stack-walk involves tracing the stack once per function

call whereas a regular stack-walk involves tracing the stack
on every memory reference instruction. The performance
speedup varied between 30% to 50%. From the results,
we conclude that an optimized (per-function) stack-walk is
significantly more efficient than a regular (per-instruction)
stack-walk.

Figure 10: Instrumentation Overhead

The influence of optimized (per-function) stackwalk on the
overall instrumentation time is depicted in Figure 11. Per-
function stackwalking contributed only a minor portion of
the overall instrumentation time while the major overhead
is due to the instrumentation code and Pin overhead.

Figure 11: Stackwalk and Instrumentation Runtime

Table 1 shows the runtimes of various levels of compres-
sion for our benchmarks. The first three entries do not in-
volve inter-process compression. Hence, only intra-thread
and inter-thread compression runtimes are considered. In
the corresponding Figure 12, we see that intra-thread com-
pression time is almost equal to the instrumentation time.
This is because intra-thread compression occurs on-the-fly
and completes soon after the instrumentation terminates.
Inter-thread compression runtime depends on the number
of EPRSDs in each thread’s compressor object after intra-
thread compression. This number varies widely depending
on the benchmark and runtime parameters. For matrix
multiplication, inter-thread compression time is low because
the resultant list of EPRSDs after intra-thread compression



Table 1: Compression Runtime
Benchmark Intra-

thread

compres-

sion (sec)

Inter-

thread

compres-

sion (sec)

Inter-

process

compression

(sec)

Matmul
24x24

14.071198 0.001632 0.000000

Matmul
48x48

25.854444 0.008064 0.000000

AMG n=1 112.623903 4.660802 0.000000
AMG n=2 70.046435 109.836724 1,163.648747

Figure 12: Compression Runtime

is much shorter than that of AMG. Inter-process compres-
sion incurs MPI communication overhead in addition to the
merging overhead, which depends on the number of EPRSDs
in each process’s compressor object after inter-thread com-
pression. For “AMG n=2”, inter-process compression domi-
nates the compression time due to MPI overhead and merg-
ing of large numbers of EPRSDs across processes.

7. RELATED WORK
RSDs were first proposed in [10] to analyze array accesses.

PRSDs were used to compress memory traces in [17] to an-
alyze cache coherence problems in OpenMP programs. This
work did not represent addresses as function of thread IDs
and did not address inter-process memory trace compres-
sion. SIGMA [6] is a data collection framework and a set of
cache analysis tools that employs online trace compression
by exploiting loops (similar to RSDs) but do not capture
thread and process level dependencies.

Caches As Filters [28] is an analytical framework for ana-
lyzing and designing caches. This work introduces TSpec no-
tation to represent memory references in a compact format.
TSpec is more complex than RSDs and represents the state
of a caching system, but the relation between memory ref-
erences and threads is not gathered. Memory address trace
compression through loop detection in a multi-programmed
environment was described in [7], but it did not address the
compression of traces in a cluster environment. Traces cap-
tured using such tools do not scale with the the number of
threads or processes in a HPC environment.

Memory tracing has been explored in many facets, in-
cluding performance counter analysis and concepts of reuse
distance to analyze programs and cache behavior [26, 29, 2,
11, 25, 12, 21, 4, 5, 3]. Our work differs in that is further de-

velops concepts of in-situ compression from ScalaTrace [22]
and METRIC [17, 20, 15, 16, 18, 19]. ScalaTrace addresses
intra-task and inter-process compression of communication
traces, but not memory traces. Also, ScalaTrace does not
involve inter-thread compression. Trace compression dis-
cussed in [8] is based on statistical sampling and results in
lossy compression and do not preserve order.

Our work addresses lossless, order preserving intra-thread,
inter-thread and inter-process compression of memory traces.
We also offer an EPRSD template library developed in C++,
for the rapid development of EPRSD compression tools for
HPC applications. Our work incorporates an optimization
to speed up the memory trace compression process by us-
ing signature trees. Also, a separate reusable C++ module,
SIGTREE, was developed to assist the development of tools
needing signature tree functionality. In our memory com-
pressor tool, ScalaMemTrace, both the XOR signatures and
signature tree options are available, which can be config-
ured at compile time. ScalaMemTrace also incorporates two
different versions of Stackwalker libraries, a simple frame
pointer traversal (Ver0) and the Wisconsin stackwalker [1],
configurable at compile time.

ScalaMemeTrace can be used along with the existing cache
performance analysis tools [17, 28] to analyze cache perfor-
mance in multi-threaded applications. ScalaMemTrace can
also be integrated with communication tracing tools, such as
ScalaTrace [22, 27], to combine online communication, I/O
and memory trace compression of HPC applications.

8. CONCLUSION
Memory traces of multi-threaded SPMD applications are

very large and do not easily facilitate analysis. Existing
memory trace tools either produce unmanageable large loss-
less trace files or produce lossy statistical summaries.

We have developed ScalaMemTrace, a unique memory
tracing framework that combines small, near-constant trace
sizes with lossless compression. Our tool extracts full mem-
ory traces of dense algebraic kernels with near-constant size
regardless of thread count or problem size. ScalaMemTrace
preserves memory access details along with reference order.
Our scheme builds on previous work with Extended Power
Regular Section Descriptors (EPRSDs), the basis of our ef-
ficient trace representation. We capture repetitive behavior
at all levels of a hybrid application: within threads, among
threads, and among processes, which enables us to elimi-
nate both sequential and parallel redundancy in the trace.
Finally, we have developed a replay mechanism that allows
traces to be streamed on-the-fly without full decompression.

The level of compression achieved depends on the program
structure. Some benchmarks used in our experiments have
rectangular loops and the execution order across threads and
processes is nearly identical. In such cases, the compressed
trace size has remained nearly constant. Other benchmarks
have non-rectangular loops and branches, resulting in vari-
ations in inter-process execution order and linear scaling of
the trace size. Compression levels are thus an indicator of
a program’s structure and its dynamic behavior. A near-
constant size of compressed trace files indicates a highly
synchronous SPMD application, while a poor compression
indicates an irregular code.

We achieved near-constant size compression for dense al-
gebraic kernels (Matrix Multiplication and Vector Addition).
For AMG, trace size grew linearly with process count.



Our work provides the basis for scalable root cause anal-
ysis into memory inefficiencies based on such aggressively
compressed traces. Beyond analysis, the work also provides
novel opportunities for system simulators, such as Dimemas,
SST etc. [23, 13, 9, 26, 24]. It is also a key component of our
on-going effort to automatically extract benchmarks from
large-scale application at various levels of details, including
the memory characteristics. Future work will address these
areas based on the capabilities of ScalaMemTrace.
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